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The role played by humans is becoming more and more important as the proportion of human-related accidents is
increasing in industry and traffic. Human error taxonomies and their applications in driving context improve the
understanding of human error mechanisms in situated driving context. In previous works, the authors provide a
human performance reliability score (HPRS) which can be applied to driving data using the modified fuzzy-based
CREAM (cognitive reliability and error analysis method) approach. The data clustering approach FN-DBSCAN
(fuzzy neighborhood density-based spatial clustering of application with noise) with genetic algorithm is applied
to automatically generate membership functions characterizing the driving behaviors individually. The driving
behaviors and the mechanism of human error to the corresponding HPRS numbers are not analyzed in previous
works. In this contribution, the classification of human driver error and its application in driving context is reviewed.
The driving behaviors and the different human errors with continuously calculated values are analyzed to investigate
what really happens. Human driver reliability is evaluated especially in situated context, this means dynamically
changing situations (on a second-timescale). The newly developed approach provides a dynamic measure and
therefore allows to dynamically identify critical situations during operation in real time. As example the supervision
of an interacting human driver is shown.

Keywords: Human error taxonomy, human reliability analysis, dynamic context, FN-DBSCAN algorithm, modified
CREAM, driving behavior.

1. Introduction

The development of automation is shifting the role
of humans from active controlling to passive mon-
itoring McDonnell et al. (2021). Human operators
should maintain situation awareness and manu-
ally take control when automation is incapable
of dealing with the problem. In human-machine
systems, the role played by humans is becoming
more and more important as the proportion of
human-related accidents is increasing. In traffic
context the US national highway traffic safety
administration (NHTSA) stated that 94 % of traf-
fic accidents are related to human factors Singh
(2015). Many advanced driver assistance systems
(ADAS) are developed to assist in some human
driver operations and monitor human vigilance
to avoid accidents Moujahid et al. (2018). The
society of automotive engineering (SAE) defines
six levels of automation regarding driving from

level 0 of no automation to level 5 of full automa-
tion Cárdenas et al. (2020). From the definitions,
it is detected that the human driver is not able
to be decoupled with driving activities even with
full automated vehicle as the driver still needs
to monitor the driving situations and possibly to
takeover the vehicle. Therefore, the analyzing of
human driver errors is still vital for driving safety.

Human reliability analysis (HRA) provides
structured methods to evaluate human reliability
in different application. The fundamental step in
HRA is the identification of human errors. To suc-
cessfully identify human errors, human error clas-
sification is necessary Philippart (2018). Human
error classification is used to analyze errors occur-
ring in accidents and anticipate potential error that
may happen. Human error classification improves
the understanding of human error mechanisms and
suggests the hints to avoid human errors Baysari
et al. (2009). With the development, many HRA
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methods are developed and classified into ”three
generations”. The so called ”first generation” con-
sidered the human as a mechanical component
who fails to execute tasks. In the so called ”sec-
ond generation”, context is the most important
factor affecting human reliability and more cog-
nitive models are considered. Further improve-
ments related to pre-existing methods are driven
by the limitations and deficiencies of the ”second
generation” methods. The dynamic progression
of human behavior is considered and the studies
have focused on defining the database of HRA
to overcome the shortages of empirical data for
the development and validation of HRA models.
These data-based and dynamic-considered meth-
ods are classified as ”third generation” HRA, these
methods are still in development Di Pasquale et al.
(2013). In HRA methods, cognitive reliability and
error analysis method (CREAM) is wildly applied
to conduct a retrospective analysis of event and
prospective analysis for the design of high-risk
systems or process.

The widely used ”first generation” and ”sec-
ond generation” of HRA methods are static as
time is less involved Zio (2009). When situated
context and dynamic cognitive and actions are
considered, these methods are not suitable, an
adaption should be generated to integrate dynamic
features. A HRA method considered as dynamic
should account for the evolution of performance
shaping factors (PSFs) and their consequences to
the outcome of events. Moreover, dynamic hu-
man reliability focuses on a detailed step-by-step
breakdown of human actions and intentions with
time Boring and Rasmussen (2016). For contin-
uously changing driving context, static HRA is
not suitable, so a definition for dynamic HRA is
required.

In the previous work He et al. (2021), the
authors provide a human performance reliability
score (HPRS) which is applied to driving data
collected from driving simulator with the mod-
ified fuzzy-based CREAM approach to evaluate
human driver reliability in dynamic context. The
applied data clustering approach is fuzzy neigh-
borhood density-based spatial clustering of appli-
cation with noise (FN-DBSCAN). Here, the used

gradient of the membership functions of the clus-
tered data is not modeled optimally (too steep),
which leads to abrupt HPRS changes. This leads
to misinterpretations, so that the fuzzy-based filter
must be improved accordingly. The challenge is
to simultaneously model the filter sensitive for
dynamic driving situations.

The following sections make up this contri-
bution: In section 2, human error taxonomies
are briefly reviewed and human errors in driving
context are discussed. In section 3, the modified
fuzzy-based CREAM approach is presented to ex-
plain procedures of automatic generation of mem-
bership functions based on driving data and the
steps to obtain HPRS. Driving behaviors and the
mechanism of human error with the continuously
calculated values are analyzed to investigate what
really happens in section 4. The summary and
outlook are provided in section 5.

2. Human driver error taxonomies

The application of human error classification
schemes is common in complex safety critical
systems. Different human error taxonomies have
been developed to understand human error mech-
anisms.

2.1. Human error definitions

Two views are distinguished between ”old view”
and ”new view” of human error Dekker (2017). In
the ”old view”, human error is the cause of trouble
and it is a simple problem, when all systems are
working well, people just need to pay attention
and comply to avoid human errors. People can,
and must, achieve zero errors, zero injuries, and
zero accidents. In the ”new view”, human error is
a symptom of deeper trouble and the complexity
of generating human error is depending on the
complexity of the organization and environment.
People can, and must, enhance the resilience of
the people and organization.

In the process of understanding human error,
different definitions and related glossary of terms
have been proposed. Swan and Guttman defined
human error as an error that is simply an ac-
tion which is out of tolerance, where the limits
of the tolerance is defined by the system Swain
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and Guttmann (1983). From Rasmussen’s point of
view Rasmussen (1983), human error can only be
described with reference to human objectives or
expectations, it depends on the explicit situation.
From Reason Reason (1990), it is obtained that
human error is taken as a universal term to com-
prise all the occasions which a planned sequence
of mental or physical activities fails to generate
the intended outcome, and these failures cannot
be associated to the intervention of some chance
agency. Hollnagel defined human error as an erro-
neous action which fails to generate the expected
result and/or which produces an unwanted conse-
quence Hollnagel (1998). In Dhillon’s definition
Dhillon (2017), human error is the failure to exe-
cute a stated task that could result in interruption
of scheduled operations or damage to property and
equipment.

2.2. Human error taxonomies

Various human error taxonomies have been pro-
posed. Three dominated taxonomies are reviewed
in this contribution, which are Rasmussen’s skill,
rule, and knowledge error Rasmussen (1986),
Reason’s slips, lapses, mistakes and violations
Reason (1990), and Hollnagel’s phenotypes and
genotypes Hollnagel (1998).

In Rasmussen’s skill-,rule- and knowledge-
based (SRK) behavior model, errors are affected
by skills, experience and familiarity with the sit-
uation encountered. The generic error-modeling
system (GEMS) is applied to classify these errors
Reason (1990).

• Skill-based behavior is developed without con-
scious control as smooth, automated, and
highly integrated patterns. Skill-based error is
typical detected in routine repetitive work.

• In rule-based behavior, the actions are often
controlled by a memory-based stored rule or
procedure.

• The performance which is goal-controlled dur-
ing unfamiliar situations, which no rules for
control are available is knowledge-based behav-
ior.

Reason classified human errors into slips, lapses,
mistakes and violations. When combining with

Rasmussen’s SRK model, skill-based errors cor-
respond to slips and lapses, rule-based and
knowledge-based errors are related to mistakes.

• Slips are errors which result from some failures
in the execution of an action sequence. Slips can
be seen as externalized actions not conducting
as planned.

• Lapses are errors which result from failures in
the storage stage of an action sequence. Lapses
are generally used for more covert error forms,
including failures of memory.

• Mistakes are failures in the inferential and/or
judgemental processes in the selection of an
objective. Mistakes are more subtle than slips
and harder to detect.

• Violations relate to actions habitual or isolated
departure from rules and regulations.

In Hollnagel’s CREAM approach, it is stated
that human actions/errors are all to some extent
cognitive, indicating that they are not able to be
properly described without consideration of hu-
man cognition. Human error can be identified as
phenotypes and genotypes.

• Phenotype concerns with the manifestation of
an erroneous action. It can be divided into
action at wrong time, action of wrong type,
action at wrong object and action in wrong
place/sequence.

• Genotype refers to the possible causes such as
the functional characteristics of the human cog-
nitive system that are assumed to contribute to
an erroneous action. Human related genotypes
can be further divided into observation, plan-
ning, interpretation, temporary person related
causes and permanent person related causes.

2.3. Driving errors

Identification and classification of driving errors
contribute to the understanding of human error
mechanisms and the development of assisted driv-
ing systems. In Stanton and Salmon (2009), the
existing driving error taxonomies are reviewed
and a generic driving error taxonomy with un-
derlying psychological mechanisms is proposed
including action errors, cognitive and decision-
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making errors, observation errors, information re-
trieval errors and violations. From Khattak et al.
(2021), driving errors can be classified into recog-
nition errors, decision errors, performance er-
rors, physical condition related errors, experi-
ence/exposure errors and violation. With the de-
velopment of assisted driving systems, the role of
human driver is gradually switching from active
maneuvering to passive monitoring, so the related
driving errors are also changed. Some new driver
errors occur in assisted driving because new driv-
ing tasks may lead to misunderstanding and/or in-
appropriate reactions on drivers Noy et al. (2018).

3. Modified fuzzy-based CREAM
approach

The modified fuzzy-based CREAM approach es-
tablished in He et al. (2021) is applied for
automatic generation of membership functions
and calculation of human performance reliability
score (HPRS) to realize the individualized human
reliability evaluation in real time.

3.1. CREAM

The CREAM approach as a so called ”second
generation” of HRA approach is applied for retro-
spective analysis of historic events and a prospec-
tive analysis for the design of high-risk systems or
processes. It provides the human cognition model
to illustrate the information processing which is
denoted as contextual control mode (COCOM).
It assumes that the degree of human operator’s
control on context is the most significant index for
human performance reliability estimation. Four
control modes in CREAM are defined, which are
scrambled control, opportunistic control, tactical
control, and strategic control. Strategic control is
related to the highest reliability and scrambled
control has the lowest reliability.

Common performance conditions (CPCs) rep-
resents the most vital factors in operation con-
text, which are similar with the concept of per-
formance shaping factors. There are nine CPCs
defined in CREAM. Each CPC includes several
levels and related expected effects on performance
reliability which are improved, not significant and
reduced. The CPC score could be calculated as

[
∑

reduced,
∑

improved]. In this case, human
performance reliability is determined with control
mode map Hollnagel (1998).

To apply CREAM into driving context, a new
CPC list has to be defined which includes the
number of surrounding vehicles, time to collision
(TTC), ego-vehicle speed, longitudinal accelera-
tion, lateral acceleration, traffic density, and gen-
eral visibility.

3.2. Automatic generation of membership
functions

(i) Fuzzy logic: Fuzzy logic is used for mod-
eling the imprecise modes of reasoning that
play an essential role in human decision
ability in an environment of uncertainty and
imprecision Zadeh (1988). It considers the
degree of truth of statements continuously
between true (1) and false (0). To define
the related membership function, the core
and support points and membership function
shape should be known. In this contribution,
trapezoidal shape is selected.

(ii) FN-DBSCAN algorithm: To define the core
and support points in membership functions,
the fuzzy density clustering method Uluta-
gay and Nasibov (2008) fuzzy neighborhood
density-based spatial clustering of applica-
tion with noise (FN-DBSCAN) is applied.

(iii) Genetic algorithm: In FN-DBSCAN, the pa-
rameter of fuzzy cardinality threshold needs
to be predefined, therefore, genetic algorithm
is applied for the optimization of parameter.

To generate cores and support values of mem-
bership functions, FN-DBSCAN algorithm is ap-
plied. To evaluate the fitness of chromosomes,
train and test data are fuzzified and through a
KNN algorithm, fitness is calculated.

3.3. Human performance reliability score
(HPRS)

The CPC levels are divided by data clustering,
When membership functions of CPCs are gener-
ated, they will be assigned to different levels with
corresponding expected effects on performance
reliability which are improved, not significant, and
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reduced. In this case, each CPC score is calculated
and human performance reliability score is gener-
ated with the sum of each CPC score.

In general, the steps to calculate HPRS are
following: i) Execute genetic algorithm to obtain
optimal value of fuzzy cardinality threshold ii)
Apply the FN-DBSCAN to calculate cores and
supports of membership functions of CPCs iii)
Assign CPC levels and related effects on relia-
bility ot membership functions to calculate CPC
scores iv) Add up all CPC scores to get the final
HPRS.

4. Results and analysis

4.1. Data generation platform

A driving simulator (SCANeRTM studio, Fig. 1)
is applied to collect driving data. Data with ego-
vehicle dynamics (speed, steering angles, etc.) and
surrounding vehicle status (TTC, lateral shift, etc.)
relative to ego-vehicle are collected to evaluate
driving behavior and human driver reliability.

Fig. 1. Driving simulator laboratory, Chair of Dynam-
ics and Control, U DuE

The scenario in this work is a two-way high
way with three lanes in each way. Normal daytime
weather condition is implemented in this scenario.
Other interacting vehicles are introduced during
ego vehicle driving, so the ego vehicle driver is
required to complete the driving tasks such as
acceleration, deceleration, maintaining the speed,
and changing lanes following the traffic rules.
Human driver reliability is dynamically changing
with driving maneuvering in different situations.

4.2. Experimental results

In this contribution, an example data set is con-
tributed by a human driver with a valid driving li-

cense for eight years with approximately 250 kilo-
meters per weekly driving and experience with
driving simulator. The driving data between 400 s
and 520 s are selected to generate the membership
functions and the HPRS.

Four CPC data including ego-vehicle speed,
TTC, longitudinal acceleration, and lateral accel-
eration are clustered and membership functions
are generated for each CPCs. The CPC scores
of traffic density and general visibility are de-
faulted to 1 as the scenario is simple with normal
daytime weather condition and the lane are rela-
tively empty. When no vehicle nearby, the effect
of CPC of number of surrounding vehicles on
performance reliability is improved, when there
are no more than 2 vehicles around, the effect is
not significant, when it is more than 2 surrounding
vehicles, the effect is reduced.

The membership functions of the clustered CPC
data are shown in Fig. 2. For the CPC of speed,
three membership functions are generated. There-
fore, the first membership function (green) could
be assigned to improved effects, the second mem-
bership function (blue) could be assigned to not
significant effects, and the last one (red) is as-
signed to reduced effects. On the contrary, for the
CPC of TTC, the assignment should be the oppo-
site, where the first membership function (green)
is assigned to reduced effects and the third mem-
bership function (red) is assigned to improved
effects as lower TTC indicates higher time pres-
sure for human driver to recognize the situations
and take actions. There is only one membership
function in CPCs of longitudinal acceleration and
lateral acceleration. In this case, the membership
function with membership degree of 1 is assigned
to not significant effects and the other part is
reduced effects.

When the effects are assigned, the CPC score
is calculated as presented in Fig. 3. It can be
observed that CPC score of lateral acceleration is
fluctuating frequently.

With the calculated CPC scores, the final HPRS
values is calculated as Fig. 4. In He et al. (2021)
the control mode levels in HPRS have been deter-
mined where strategic level has the value of 2 in
HPRS and tactical level is -1. In this example, all
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Fig. 2. Membership functions of CPCs

Fig. 3. Four CPC scores

values of HPRS is larger than -1, so tactical level
is not shown. It can be detected that most of the
HPRS values are above strategic level indicating
that the driving performance is reliable. It is still
meaning to investigate human driver performance
in the peaks and valleys of HPRS, especially the

dynamic changes of human performance during
the valleys time. With the continuously calculated
HPRS, human driver performance can be super-
vised in real time.
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Fig. 4. HPRS results

4.3. Analysis of human driver critical
behaviors

In this work, the time period between 409.1 s and
411.6 s in HPRS is studied to examine details of
the driving process (as example). In this period
of time, HPRS dramatically fluctuates with firstly
decreasing to the bottom then increasing to the
top. The situation could be described as follow:

• At the time of 409.1 s, the speed, TTC, longi-
tudinal and lateral acceleration are 82.6 km/h,
0.46 s, 0.95 m/s2, and 0.05 m/s2, respectively.
It should be noticed that before time of 409.1
s, the driver already pressed the brake pedal
to slow down the speed, but the TTC is still
decreasing and finally reached the minimum of
0.39 s.

• At time of 409.3 s, the TTC decreased to 0.39
s, the driver suddenly pressed the brake pedal
hardly inducing the longitudinal acceleration
increasing to -10.2 m/s2 with the speed of 63.5
km/h and the related TTC of 1.42 s at time of
409.9 s.

• After the sudden and hard braking, at time of
411.6 s, the ego-vehicle speed decreased to 56.3
km/h with the related TTC of 4.6 s and longitu-
dinal acceleration of 0.36 m/s2.

• During maneuvering, the lateral acceleration
has two relatively large fluctuations, one is at
time of 409.3 s and the other is at time of 410.6
s with both of the absolute value of 0.73 m/s2.

From the description of the critical situations,
it can be detected that the human driver has per-
ceived the situation (e.g. short time of TTC) and
has pressed the brake pedal to slow down the

ego-vehicle speed. However, the human driver did
not identify that the TTC is still decreasing to
critical level so the TTC between the ego-vehicle
and front vehicle is misjudged. When the driver
finally identified that the distance is too close, hard
braking to slow down the speed is implemented.
The values of lateral acceleration waving indicate
the stress of driver when the critical situation is
suddenly identified.

To classify the human driver critical behaviors,
the taxonomy established in Stanton and Salmon
(2009) is applied. It can be concluded that the hu-
man driver misjudges the TTC, so the error mode
is classified into misjudgment which is related to
situation assessment of cognitive and decision-
making errors in the underlying psychological
mechanism.

5. Summary and outlook

In this contribution, human driver critical be-
haviors are identified and evaluated in real time
with a new human performance evaluation ap-
proach based on modified fuzzy-based CREAM
approach. The driving data collected from driving
simulator are clustered with FN-DBSCAN to gen-
erate individualized membership functions of dif-
ferent CPCs. The critical situation in driving pro-
cess is analyzed, and the critical driving behavior
is identified as misjudgment of TTC between ego-
vehicle and front vehicle. This work contributes to
generate a new measurement-based understanding
of human error-related critical situations in situ-
ated context, here applied to a traffic example.

As a next step, some other data cluster-
ing approaches, such as genetic-based mem-
bership function parameter-estimation (GMFPE),
and probabilistic-based data clustering approach
could be applied to more driving data generated
from different human drivers. Meanwhile, the
control mode levels can be compared with SRK
framework to define the value of new levels for
better estimation of critical situations.
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